南京站 中考网-南京站

南京市建邺区2012年中考一模数学参考答案

2013-08-13 13:44:15https://files.eduuu.com/ohr/2012/05/17/141935_4fb4987774ad7.zip

建邺区2012年九年级学情分析卷

数学参考答案及评分标准

说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.

一、选择题(每小题2分,共计12分)

 

题号

1

2

3

4

5

6

答案

A

B

D

C

C

A

 

二、填空题(每小题2分,共计20分)

7.      8.       9.         10.          11.3   

12.1       13.145°        14.(-4,3)      15.21°       16.

三、解答题(本大题共10小题,共计84分)

17.(本题6分)

解:原式=······················· 3分

 

································· 6分

18.(本题6分)

解:解不等式①,得x≥-2.························ 2分

解不等式②,得x<13.··························· 4分

所以,不等式组的解集是-2≤x<1.···················· 5分

画图正确(略).······························ 6分

19.(本题6分)

(1)列表或树状图表示正确;························ 3分

(2)A型号电脑被选中的概率P=······················ 6分

20.解:依题意得,∠ACD=45°, ∠ABD=60°

Rt△ADC中,,························· 1分

 ∴(千米).···················· 3分

Rt△ADB中,,

 ∴(千米).····················· 5分

BC=(千米).······················ 6分

答:.汽车C与汽车B之间的距离.约为12.7千米.

21.(本小题满分6分)

解:设金色纸边的宽为x分米,根据题意,得·················· 1分

2x+6)(2x+8)=80.···························· 4分

解得:x1=1,x2=-8(不合题意,舍去).·················· 6分

答:金色纸边的宽为1分米.························· 7分

22.(1)400;······························· 2分

图略:·································· 4分

(2)8··································· 6分

23.(本小题满分7分)

证明:(1)∵ADBC,∴∠DBC=∠ADB

又∵BC=CD,∴∠DBC=∠BDC. 

∴∠ADB=∠BDC.······························ 1分

又∵∠ADB=∠BDC,BAADBECD,∴BA=BE

在RT△ABD和RT△EB中, BD=BDAB=BE

∴△ABD≌△EBD.   ···························· 2分

 ∴AD=ED.································· 3分

(2) ∵AFCD,∴∠BDC=∠AFD

又∵∠ADB=∠BDC,∴∠AFD=∠ADB. ∴AD=AF

又∵AD=DE,∴AF= DEAFCD.∴四边形ADEF为平行四边形.········· 6分

AD=DE ,∴四边形ADEF为菱形. ······················ 7分

24. (本小题满分7分)

25.(本题8分)

解:(1)7:00~7:30加气站的储气量y(立方米)与时间x(小时)的函数关系式为:

y=10000-600x;······························ 2分

8:00之后加气站的储气量y(立方米)与时间x(小时)的函数关系式为:

y=-1200x+10400.  ····························· 5分

 (2)不能·································· 6分

因为(3××200+5××200)÷20=40<50, 所以50辆车不能在8:00之前加完气.8分26.(本题8分)

解:.(1)连接BC,BE  ···························· 1分

由△ABDCBE,可证得CE=AD························ 3分

(2)CE=AD  ······························ 4分

连接BCBE,过点AAFBC,垂足为点F

可证△ABD~△CBE

∴.

在RT△ABF中,∠ABC=60°

∴.

∴.······························· 6分

(3)CE=2sinAD····························· 8分

27.(本题10分)

解:(1)在中,∵AB=ACMBC中点

AMBC

在Rt⊿ABM中,AB=10,BM=8 ∴AM=6.····················· 1分

当⊙O与⊙A相外切

可得    解得·················· 3分

当⊙O与⊙A相内切

可得    解得·················· 5分

∴当或时,⊙O与⊙A相切.

(2) 存在

当点OBM上运动时()

可得    解得················· 8分

此时半径当点OMC上运动时可得  解得················· 10分

此时半径

当或时,,⊙O与直线AM相切并且与⊙A相外切.

 

28.(本题10分)

解:(1) ······························· 1分

(2)①∵二次函数经过点(1,2)和(-1,0)

可得   解得

 即····························· 2分

顶点坐标为(,)···························· 3分

② 该函数图像上等距点的坐标即为此函数与函数和函数的交点坐标   

解得P1()  P2() 

P3() P4()················· 7分

 (3)   ∵二次函数与x轴正半轴交与点(m,0)且

∴   即

同理    

∵  故

∴································· 10分

首页 上一页 下一页 尾页

相关推荐

点击查看更多
热点策划 更多
进入热点策划频道