全国站 中考网-全国站

中考网

2024年中考数学复习 【圆】相关公式

2023-10-14 21:36:16佚名

2024年中考数学复习【圆】相关公式

1.圆的周长C=2πr=πd

2.圆的面积S=πr²

3.扇形弧长l=nπr/180

4.扇形面积S=nπr²/360=rl/2

5.圆锥侧面积S=πrl

〖圆的定义〗

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗

圆周率:圆周长度与圆的直径长度的比叫做圆周率,

值是3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...,通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

〖圆和圆的相关量字母表示方法〗

圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S

〖圆和其他图形的位置关系〗

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

直线与圆有3种位置关系:

无公共点为相离;

有两个公共点为相交;

圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r

〖圆的平面几何性质和定理〗

⑴圆的确定:不在同一直线上的三个点确定一个圆。圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

⑶有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③S三角=1/2*△三角形周长*内切圆半径

④两相切圆的连心线过切点(连心线:两个圆心相连的线段)

〖有关切线的性质和定理〗

圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:

(1)经过切点垂直于这条半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

〖圆的解析几何性质和定理〗

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

       编辑推荐:

       2024年中考各科目重点知识汇总

 

  最新中考资讯、中考政策、考前准备、中考预测、录取分数线等
 
  中考时间线的全部重要节点
 
  尽在"中考网"微信公众号    

相关推荐

点击查看更多
特别策划更多
进入特别策划频道