2024年初中七上有理数常考经典难题
一、知识储备
本章重难点:数轴、相反数、绝对值以及符号的确定。
1.数轴
(1)数轴的概念:
规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:
原点,单位长度,正方向。
(2)数轴上的点:
所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。
(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)
(3)用数轴比较大小:
一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2.相反数
(1)相反数的概念:
只有符号不同的两个数叫做互为相反数。
(2)相反数的意义:
掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:
与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:
求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值
1.概念:
数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。
③有理数的绝对值都是非负数。
2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
4.有理数大小比较
1.有理数的大小比较:
比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);
也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。
2.有理数大小比较的法则:
①正数都大于0;
②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小。
规律方法·有理数大小比较的三种方法:
(1)法则比较:
正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小。
(2)数轴比较:
在数轴上右边的点表示的数大于左边的点表示的数。
(3)作差比较:
若a﹣b>0,则a>b;
若a﹣b<0,则a
若a﹣b=0,则a=b。
反之也成立。
编辑推荐: