2023年初中数学一元一次方程解决应用题:等量关系的规律
若干应用问题等量关系的规律
(一)知识点
(1)和、差、倍、分问题
此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
增长量=原有量×增长率
现在量=原有量+增长量
(2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。
①柱体的体积公式
V=底面积×高=S·h= r2h(2为平方)
②长方体的体积
V=长×宽×高=abc
(二)例题解析
●1.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的 。问每个仓库各有多少粮食?
【解】
设第二个仓库存粮X吨,则第一个仓库存粮3X吨,根据题意得
5/7×(3X-20)=X+20
X=30 3X=90
●2.一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, π≈3.14)
【解】
设圆柱形水桶的高为x毫米,依题意,得
π·(200/2)2x=300×300×80(X前的2为平方)
X≈229.3
答:圆柱形水桶的高约为229.3毫米
●3.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高?
【解】
设乙的高为 Xmm,根据题意得
260×150×325=2.5×130×130×X
X=300
编辑推荐: