全国站 中考网-全国站

中考网

2023年初二数学:一次函数的图像和性质

2023-02-03 20:07:45佚名

一次函数的图像和性质

截距一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.

要点解析

截距不是距离,是直线与y轴交点的纵坐标,因此可为正数、零、负数.

一次函数的图像★★★一次函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线.

要点解析

1.一次函数y=kx+b(b≠0),是过点A(0,b)和点B(-b/k,0)的一条直线.

如图当k<0,b>0和k>0,b<0时的图像如下:

2.当b1=b2=b时,一次函数y=k1x+b1与一次函数y=k2x+b2的图像均经过y轴上的点(0,b).

3.一次函数y=kx+b(b≠0)的图像可通过正比例函数y=kx图像平移得到

当b>0时,向上平移b个单位;当b<0时,向下平移

|b|个单位.

因此可以得到:

如果b1≠b2,那么直线y=kx+b1与直线y=kx+b2平行.

反过来,如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2,b1≠b2.

4.一次函数y=kx+b(k、b为常数,k≠0)与一元一次方程kx+b=0的关系

一元一次方程kx+b=0的解x=-b/k,就是一次函数y=kx+b(k、b为常数,k≠0)图像与x轴交点的横坐标.

5.一次函数y=kx+b(k、b为常数,k≠0)与一元一次不等式kx+b>0、kx+b<0的关系

当k>0时,要使kx+b>0,其一次函数图像应在x轴上方,故其解为x>-b/k;要使kx+b<0,其一次函数图像应在x轴下方,故其解为x<-b/k.

当k<0时,要使kx+b>0,其一次函数图像应在x轴上方,故其解为x<-b/k;要使kx+b<0,其一次函数图像应在x轴下方,故其解为x>-b/k.

一次函数的性质★★★

1.一次函数y=kx+b(k、b为常数,k≠0)具有以下性质:

当k>0时,函数值y随自变量x的值增大而增大;

当k<0时,函数值y随自变量x的值增大而减小.

2.k、b的符号与直线y=kx+b(k≠0)位置的关系

当k>0,且b>0时,直线y=kx+b经过第一、二、三象限;

当k>0,且b<0时,直线y=kx+b经过第一、三、四象限;

当k<0,且b>0时,直线y=kx+b经过第一、二、四象限;

当k<0,且b<0时,直线y=kx+b经过第二、三、四象限.

把上述结论反过来叙述,也是正确的.

     编辑推荐:

      2023年中考各科目重点知识汇总

  最新中考资讯、中考政策、考前准备、中考预测、录取分数线等
 
  中考时间线的全部重要节点
 
  尽在"中考网"微信公众号    

相关推荐

点击查看更多
特别策划更多
进入特别策划频道