全国站 中考网-全国站

中考网

2022年初中数学三角函数的计算公式

2022-04-23 16:54:20佚名

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan^2A)

Sin2A=2SinACosA

Cos2A=Cos^2A--Sin^2A=2Cos^2A—1=1—2sin^2A

三倍角公式

sin3A=3sinA-4(sinA)^3

cos3A=4(cosA)^3-3cosA

tan3a=tanatan(π/3+a)tan(π/3-a)

半角公式

sin(A/2)=√{(1--cosA)/2}

cos(A/2)=√{(1+cosA)/2}

tan(A/2)=√{(1--cosA)/(1+cosA)}

cot(A/2)=√{(1+cosA)/(1-cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)

和差化积

sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π/2-a)=cos(a)

cos(π/2-a)=sin(a)

sin(π/2+a)=cos(a)

cos(π/2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

tgA=tanA=sinA/cosA

万能公式

sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}

cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}

tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

asin(a)+bcos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]

asin(a)-bcos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]

1+sin(a)=[sin(a/2)+cos(a/2)]^2

1-sin(a)=[sin(a/2)-cos(a/2)]^2

公式一:设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

相关推荐: 

  2022年中考各科目重点知识汇总
 

关注中考网微信公众号 

每日推送中考知识点,应试技巧

助你迎接2022年中考!

相关推荐

点击查看更多
特别策划更多
进入特别策划频道