全国站 中考网-全国站

中考网

2020初中数学数学知识点:不等式与不等式组

2020-05-25 10:44:15佚名
  一、目标与要求
 
  1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
 
  2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
 
  3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
 
  二、知识框架
 
 
  三、重点
 
  理解并掌握不等式的性质;
 
  正确运用不等式的性质;
 
  建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程;
 
  寻找实际问题中的不等关系,建立数学模型;
 
  一元一次不等式组的解集和解法。
 
  四、难点
 
  一元一次不等式组解集的理解;
 
  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
 
  正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
 
  五、知识点、概念总结
 
  1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
 
  2.不等式分类:不等式分为严格不等式与非严格不等式。
 
  一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
 
  3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
 
  4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
 
  5.不等式解集的表示方法:
 
  (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
 
  (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
 
  6.解不等式可遵循的一些同解原理
 
  (1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
 
  (2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)
 
  (3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。
 
  7.不等式的性质:
 
  (1)如果x>y,那么yy;(对称性)
 
  (2)如果x>y,y>z;那么x>z;(传递性)
 
  (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)
 
  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
 
  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
 
  (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)
 
  (7)如果x>y>0,m>n>0,那么xm>yn
 
  (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)
 
  8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
 
  9.解一元一次不等式的一般顺序:
 
  (1)去分母 (运用不等式性质2、3)
 
  (2)去括号
 
  (3)移项 (运用不等式性质1)
 
  (4)合并同类项
 
  (5)将未知数的系数化为1 (运用不等式性质2、3)
 
  (6)有些时候需要在数轴上表示不等式的解集
 
  10. 一元一次不等式与一次函数的综合运用:
 
  一般先求出函数表达式,再化简不等式求解。
 
  11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
 
  了一个一元一次不等式组。
 
  12.解一元一次不等式组的步骤:
 
  (1) 求出每个不等式的解集;
 
  (2) 求出每个不等式的解集的公共部分;(一般利用数轴)
 
  (3) 用代数符号语言来表示公共部分。(也可以说成是下结论)

相关推荐

点击查看更多
特别策划更多
进入特别策划频道