常用的不等式的基本性质
2012-11-14 10:33:39叶子静
常用的不等式的基本性质:a>b,b>c→a>c;
a>b →a+c>b+c;
a>b,c>0 → ac>bc;
a>b,c<0→ac<bc;
a>b>0,c>d>0 → ac>bd;
a>b,ab>0 → 1/a<1/b;
a>b>0 → a^n>b^n;
基本不等式:√(ab)≤(a+b)/2
那么可以变为 a^2-2ab+b^2 ≥ 0
a^2+b^2 ≥ 2ab
扩展:若有y=x1*x2*x3.....Xn 且x1+x2+x3+...+Xn=常数P,则Y的最大值为((x1+x2+x3+.....+Xn)/n)^n
绝对值不等式公式:
| |a|-|b| |≤|a-b|≤|a|+|b|
| |a|-|b| |≤|a+b|≤|a|+|b|
证明方法可利用向量,把a、b 看作向量,利用三角形两边之差小于第三边,两边之和大于第三边。